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l. Introduction

Pulsar signal: hundreds of single pulses
=>» integrated profile (usually steady).

Integrated profiles are rich in morphology,
and could evolve with frequency.
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A special kind of profile property: bifurcated components (BCs)

Double notches (DNs):
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A special kind of profile property: bifurcated components (BCs)

Bifurcated peaks:
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Explanations to phenomena:

“Conal components” & “Core component”: What’s the physical
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Explanations to phenomena:

What's behind bifurcated components?

Dyks, Rudak & Rankin 2007 A&A: direction of acceleration?

Emission from paraIIeI accelerated particles is naturally bifurcated.

When part of emission particles
N are lost or part of emission is
N absorbed double notches appear.

Flux density

ensity

“(2) ‘Cannot produce too deep notch.
Dyks, Rudak & Rankin 2007 A&A
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Figure 4.11b Angular distribution of radiation emitted by a particle with
parallel acceleration and velocity.

(d)

Figure 4.11d Angular distribution of radiation emitted by a particle with
perpendicular acceleration and velocity.

From Rybicki & Lightman
Radiative Processes in Astrophysics
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Problem (Dyks, Rudak, Demorest 2010§ ‘””2;’
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Explanations to phenomena: Ner = 1y + N1
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What'’s behind bifurcated components? = 3.2, (;) §°K35(0) + & Kijs(y)sin ]

Dyks, Rudak & Demorest 2010 MNRAS: consider partial absorption of curvature radiation cone?
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Problem (Dyks 2023):

(1) Too narrow profile | 1 [deg]
Dyks, Rudak & Demorest 2010



Dvks 2023: consider profiles being modified by inverse Compton scattering (ICS).

ICS: high energy electrons give energy to photons.

2

When yhv < m,c* is satisfied (always true for pulsar radio waves) in ICS, v; = y?v,.

ICS changes the radiation cone morphology, and spectral properties.



Il. Basic Model for Conal Structure

A photon goes through several following stages in pulsar magnetic field:
(i) Emitted at some point rem;

(ii)) Propagate through a mean free path nsc;
(iii) Scattered by electrons moving along local B field.

Assume scattered photons propagate in the direction of scattering electron.
, €=> in the direction of local B field.
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Important property of dipolar field:
Tangential direction a only depends on polar angle ©.
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Apply to formation of conal emission:

Dashed line:

N, N e nitial emitting direction (goes through pulsar centroid).
N\ /(9/4)6,

Black solid line:
Initial emitting direction (from emitting point).

White-tip arrows:
B-field directions for points on the dashed line.

Black-tip arrows:
B-field directions for points on the black solid line.
(i.e. ray propagating direction after scattered at this point)

When mean free path of photon is large
NG enough (nsc >>rem), a = (3/2)*(3/2) 6
L 3 \ — 9/4 9

Emission point
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If there’s second order scattering:
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Emission: a=3/20
bring 2

First scattering: o = (3/2)*(3/2) 6=9/4 06

Second scattering: a =(3/2)*(3/2)*(3/2) 6 =27/86

i T | =»=>» Form inner & outer cones. E 1

inner cone ) : 9 2
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e /V Scattering 1

(9/4)/(27/8) = 2/3

B core o .
- (3/2)/(9/4) = 2/3 - Y—> Emission point

: em
l|l|||lll||ll|ll||ll 11




Comparison with data: R, = -6

R smaller than 2/3
=» Beam suppression?

R

W

Statistics from Dyks & Pierbattista 2015
Q type: 4-components profile
M type: 5-components profile

—— total observed -
: Q type
- M type .
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Two kinds of ray scattering with long enough mean free path:
EREEL VRN e

: y — (us)y" | Left:two rays emitted at same polar angle;
—j.¥(27:’8)99,m 1 Right: two rays emitted at different polar angle.

I|I1I|III|'-!l[I|III

(27/8)6, .

in
rSZ

=» Forms double cones or core-cone.

out \
S2

| Dipolar magnetic field configuration confirms
(9| (9/4),, | scattering angles to be independent of
scattering radii.

| ] ~\ 1 =»Non-dipolar: could still be valid for any

-\ (9146, l-pole star-centered field.
R.\2+1 R.\2+!
L B, = B:f(T*) P(cos ) = BH(T*) ’
'-.‘Sl"l | O\ ¢ B, R,\2+! I (R)\2+!
b a . ~ . in In out out N\ G BB = ! dPI(COS QB)IdBB ~ BI A\l . BB ’
(o # Tey, Fan? To, R S ST S St S \ I+ 1\r 72\ r
- 's1” 's1 's2” 's2 + 's17's27's1 7 's2 '- —
S o SR T SOt O Arons & Scharlemann 1979 Apl.
r:m<< r;"‘" r;2 ri:m '{( rif;l << rigz 0. =~ & — de (COS 9)/d9 A~ 59
“N ou ou ou LY X T '
<<y << Ty, (312)0. N Tom << Toy <<Toy out B, (l + 1)P(cosf) 2

ut
N ' r =
|. | I | I | I | I | | | (‘ 4 | [ | |1 1 | |1 1 | I | | EW /d 13




l11. ICS’ impact on profiles’ frequency dependence

| : Conal components appear at high frequency:
_ _ They are scattered and blueshifted.
: * 1.4 GHz - (v = )/ZVO)
Different polarization modes are differently scattered
=» Different dominating modes for core/conal components

radio flux (Stokes I)
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690 MHz

—10 O 10
B1700-32

Mean free path should decrease with frequency:

Higher frequency =2 lower scattering height
=> = Smaller scattering angle
=>=>» Narrower profile
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690 MHz

| | |
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Mean free path should decrease with frequency:

Higher frequency =2 lower scattering height
=>»=» Different scattering angle
=>=>» Components’ merging
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V. Understand Bifurcated components

Two types of bifurcated components:
(1) Narrow conal components merging quickly with increasing frequency A oc v="=
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Two types of bifurcated components:
(1) Narrow conal components merging quickly with increasing frequency A o p—12

This kind of bifurcated components are scattered by AD < 1/
electron flow of very small velocity direction spread. U Vsc

Beam width / components’ separation: A «< 1/y,. (1/Lorentz factor of scattering particles).
. A~ 12
For ICS: Vobs ~ VeeVem

-> A X (vem/vobs)l/2



Two types of bifurcated components:
(2) Wide, strong, and symmetric bifurcated components, merging with frequency slower.

A X U —0.35
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Two types of bifurcated components:
(2) Wide, strong, and symmetric bifurcated components, merging with frequency slower.

obs

The larger width results from /\/\/3

scattering by particles with AV > 1/Vi
larger velocity spread. Dn,,A/\z

“Curvature self-Compt;

Profiles of different frequencies could be blueshifted M

To a same frequency €= origin of “frequency-integrated” CR beam.




Two types of bifurcated components:
(2) Wide, strong, and symmetric bifurcated components, merging with frequency slower.

ICS of curvature radiated beam: components polarized within k X B
plane could be effectively scattered. v

(But not at ) \

obs

i
!
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Emitting particle with y~10: CR freq ~ 1 MHz.
Observed frequency ~ 1GHz = y,.~30. M

Scattering particles and emitting particles could have same energy distribution.




V. Discussion

(1) Implications for subpulse modulation:
Scattering modifies beam structure & spectral properties.

=» Temporal variations of electron energy spectrum could lead to flux modulation.

(2) Cones or fan beams?
The answer is ambivalent at present...

The geometry behind conal structure may not be conal because of scattering.



Summary: ICS of curvature radiation in pulsar magnetic field
could explain conal structures and bifurcated components.

Thank you for your attention ©



