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l. Introduction

(i) Pulsar magnetosphere and polar cap

A note in Zhihu
for Amato’s paper.
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Pulsar = Faraday Disk

Rotating compact object in magnetic field
=>Electric field distribution

=>»=» Provide acceleration regions
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Charged particles fill the pulsar surroundings =» magnetized plasma =2 magnetosphere

Static magnetosphere:
g(E+vxB)=0
Corotation condition:
E4+(2xr)xB=0
Charge density satisfies:
V-E=A4np
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Charged particles fill the pulsar surroundings =» magnetized plasma =2 magnetosphere

Rotation ax|s>
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Static magnetosphere:
g(E+vxB)=0
Corotation condition:
E4+(2xr)xB=0
Charge density satisfies:
» Closed within LC:

V- BE=dmp Closed field lines
N > Not closed within LC:

1B 1 Open field lines
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=>» Light cylinder (LC):
RLC — C/Q

Magnetic field lines

PG =

Feet of open field lines on
pulsar surface: Polar cap.

Goldreich-Julian density (Goldreich & Julian 1969)
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(ii) Introduction to models
(1) From Charge density driven to Current density driven:

From previous pages, we know when p#p GJ at somewhere, the magnetosphere is
no longer static (non-force-free, non-FFE).

But for open field lines region, the magnetosphere is naturally “non-static”:
Open field lines twist at light cylinder =2 always requires magnetospheric currents.

Use current density as indication for acceleration’s happening.

Introduce o = jH/(pGJC)

0 < a < 1: (mild relativistic p=p_GJ flow) or (ultra-relativistic p<p_GJ flow) =» no lack for charge
a>1:|p|>|p GJ| flow =» charge starvation = parallel electric field arises
o < 0: net charge decrease =2 charge starvation =» parallel electric field arises



(2) Ruderman-Sutherland (RS) model v.s. Space-Charge-Limited-Flow (SCLF) model:

RS model (Ruderman & Sutherland 1975): no supplement of plasma from pulsar surface.
(With isolated “sparks” =2 can explain subpulse drifting)

SCLF mode (Arons & Scharlemann 1979...): ions & electrons supplied by pulsar surface/atmosphere.

(Different in binding energy at pulsar surface) This paper:
2D & 3D simulations

(3) Coherent radio emission mechanism: On discharge processes

Simulation by Philippov, Timokhin & Spitkovsky 2020:
Spatial inhomogenous discharge causes excitation of ordinary wave'modes.

Homogeneous: Oscillation // Magnetic field Inhomogeneous 7




ll. Simulation setups

(1) EM dynamics

Unperturbed (Force-Free, FFE): Bywz = Bo + By, Ewy = —Q X 7 X Bg/c pe; = V - Eppp /4T
0, .
Corrections: aﬁSE:CV X 0B —4m(g — Jmag)a
9, V-oE = 4’”()0 — /OGJ)
—o0oB=—¢cV X 0F.
ot
POIar Cap: RPC — R*\/R*/RLC RLC —_ CP/Q?T

Two stationary solutions:
(i) O6E =6B =0, fully force free, J = Jmag € Abundant plasma everywhere
(ii) j=0, 0B = —B,, no magnetic field twist €= No plasma loading



(2) Magnetospheric current distribution: follow Gralla et al. 2016, 2017
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(3) QED pair creation =2 leads to large multiplicity M = ni/ng > 1

Emission in polar cap: synchrotron curvature radiation.

deh 1 e* 1 > :+: 3. C 3
= K= 5(x)dex, e = —h—y.
dtde /37 h?c~f /5 5/3(2) PR 2 pe P
Eph
Cross section for pair creation:
] B o X = (B/B;)épn siny Exh = € h/mc
=0 0232 sing = exp (-)@(gph sin ) — 2), vr T
dz B, Ac 3X B, = m?c’/eh ~ 4.41 x 103G
Secondary particles’ velocity:
| cos 1, |(82, — 4)1/? 1
U = - 5 = 1/2 ™~ Sinwa ™~ 102_103}
(sgh sin“ v, + 4 cos? z/;a)

Pair creation & emission energy scales described in 3 gamma parameters:

Ypc — 0-5(Rpc/d?)2 ebipe = (2/3)‘327?&(1/?2 (3/2)5(C/Pc)7§mit — MMeC
dS' = ¢//Ax|peel/me Eph = (V/Yemit)”

Generally,y PC>>y rad >>y emit.
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(4) Atmosphere

SCLF model: thin electron-ion atmosphere =» reservoir of charged particles.
~ A hot plasma layer at simulation boundary. 1 = Npeak €xp (—z/h) h = kT/(meg) ~ 10d¢’
(This T is about 2.5x10% K.) Npeak ~ 10N,

RS model: no atmosphere.

(5) Initial plasma state

Multiplicity ~afew.  j = j,.. J0E =0 pey = po,(14+0.82/L,)
5] N\

N . B W O e

Initial inhomogeneity: divide polar cap into different patches.
stop injecting initial plasma at different times on neighboring patches.

(6) Numerical details

Tristan-v2: multi-species radiative PIC code (Hakobyan et al. 2024).
Initial magnetic field: uniform. Curvature of field lines: prescribed. Multiplicity < 50...

—Rpc 0 Rpc



l1l. Results
(1) SCLF

(1.1) Small gap & Constant field lines’ curvature  Dipolar field with multipolar components?
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Super-GJ region (j/j GJ>1): gap close to surface.

Early time: due to initial inhomogeneity sets, some patches have cleared plasma region, while some have not.

=>»=» Gaps are also in patches. And they are quasi-stationary.
T

E,/Epc, t=2.1L,/c
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Super-GJ region (j/j GJ>1): gap close to surface.
Late time: more patches clear plasma =» gaps are connected to larger pieces.
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Return current region (j/j GJ<0): higher gap.
Larger difference in motions of positrons & electrons = stronger electric field = smaller gaps
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Transverse coherence scale of gaps < 2*| gap =2 Desynchronization of discharges.
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Ez/Epc, t=3.8 Lz/(?
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(1.2) Small gap & Strong Desynchronization (more plasma)

Discharge cyclic period too short = reverse bombardment too strong =» surface too hot
=» can’t fit X-ray observation

Actually caused by too low plasma density in simulation.

=» To fix it, the authors inject additional extended tails behind escaping clouds of secondary plasma
lgap K Rpc, tails

Particle number
density:

Longer cyclic period
& Stronger desynchronization
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(1.3) Small gap & Quasi dipolar field pe = pe,o(Rpc/T)
When x = 0, p =2 o= =» discharge is absent at the center.

lgap < HPC: P~ 1/6

2Rpc , . G v"‘

Particle number Larger gap.

density: N Rpc e

Front of screening inclined
=>» benefit emission
(See page 7)
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(1.4) Large gap € less energetic pulsars

Smaller electric field for acceleration.

lgap < Llpc, P = const

Particle number
density:
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(2) RS model: generally similar to SCLF, but with larger electric field for j/j GJ>1

E/ field:
Particle
number
density:
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(3) 3D, SCLF

60° inclined rotator. Small gap for j/j GIJ<O, larger gap for j/j GIJ>1.
Divide polar cap into 6x6 square patches. Two patches with initial plasma injection.
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Particle
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(4) Check for the model validity: evolution of magnetic field twist
€= evolution of magnetospheric current

Large gaps lead to a noticeable untwist of the field lines.
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V. Conclusion & Discussion

Main conclusion: transverse coherence scale of a discharge zone ~ longitudinal gap size

Discussion point 1: NO spark.
Polar caps are filled with discharge regions.
NO noticeable plasma drifting.

Single pulse timescale >> discharge timescale
Single pulse modulation € Radiation happens at discharge boundaries?
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Discussion point 2: for old pulsars, plasma density may be smaller = deviate from FFE.
=>» may have different properties from this paper’s simulation.
Larger gap =@ significant twist (at light cylinder) evolution
=>» larger timescale evolutions
=>» nulling... in old pulsars?

Discussion point 3: repetition rate of discharge... too artificial?

RHi A 3K Thanks for your attention.



