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l. Introduction

Pulsar wind nebulae (BK)F 22X, PWNe):
WERPEREN, BTEENVEREERRN, mRER, H

A note in Zhihu
for Amato’s paper.

- Located within or out of
supernova remnants (SNRs).

- Broadband emission.

- Most numerous class of
galactic VHE y-ray emitters.

(VHE: 0.1 TeV — 100 TeV)
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VHE emission mechanisms: mainly two approaches
- Leptonic process: inverse Compton scattering (ICS) by electrons/positrons.

- Hadronic process: pion decays, where pions are created in proton collisions.

Source of electrons: compact star itself & pair creation (y-B process) & /7
Source of protons: compact star itself? ?ff:f

=>» Will hadrons escape the pulsar surface into the PWN?

A related quantity: average pair production multiplicity

< k > = (Number of e+ escaping light cylinder) 1:§+ B
/(Number of Goldreich-Julian et) . ; Pinal
0 ¥ pair creation

[Hadrons do not multiply in cascades in magnetospheres.] 1 0,1,2  generation #
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Goal of this paper: constrain <k> for a number of PWNe.

Data from H.E.S.S. & LHAASO, also using radio observations (to get the sizes of PWNe & SNRs).

Modeling based on de Jager 2007 ApJ.

Basic logic: Number of PWN electrons: from observed spectrum

(Radiative spectrum € electron spectrum =» electron number)
Nel

2NGJ

(K) =

Number of GJ electrons: from integrating E-dot
(Pulsar spin down €= Pulsar current =» GJ electron number)

Note that this multiplicity is a lower limit, because PWN electrons are only calculated from
VHE observations. They are only part of the total electrons.



ll. Modeling theory

(i) Deriving PO:

Since the total GJ electron number needs accurate age information,
the initial/birth period PO is required.

2 2
1 (2_”) _ 5 (2_”) = E¢p (E,) (total spin-down energy)
2 Py 2 Pt

The E¢p is related to observables by pressure balance (all assuming spherical):

Central pressure of the SNR (Sedov solution): P_= 0.074E,/R®

ST

, , 3(y—1) E,
PWN interior pressure: P = o~ 1 =
47 R

pwn

Equate two pressures:  Rpwn(t) = 13() (11 Esp/Eo)Y° Rs nr(2). m=1 n =102

-1/2
2E0 ( RPWN )3 | (271')2 /
ml \mRsnr) \ P,

999 P() =2

Also refer to van der Swaluw & Wu 2001 ApJ.



(ii) Deriving Ngy

B Q- B , X B,Q°R?
PGJ = e Integrate pcs/e over the polar cap, times c=» Ngj = 5 oo
. - .. BZR0O*sin” .
Plug in dipolar radiation loss: E = — *6038111 X (sin2 ~ )
t=—1(Pp) 6 Et 1/2
Integrate over time=>=>=> NGJ:f [o¢ i)] (—dt)
=0
E-dot changes because Q changes with time (braking).
| ] o () a=(n+1)/(n-1)
=k 00 = e > HOS “( * TT}) 5= Po/((n—1)Fy)

In the present paper, n = 3,7, = 10yr.

n—1
Actual age used in integration: r(P,, P,, Py,n) = 1—(&) X il :
Py (n— )P,

Also refer to Amato 2024 arxiv.



(ii) Deriving N, and (k)

The observed radiation spectrum is related to the electron spectrum through one-zone model:

t 663‘ .
N (e, t) :/t dt; Qlei (€, t5t;), L] oy /dEiEiQ(Eiati) =Erotal Lotal = E£T¢

[/

de;/0€ is determined by electron emission mechanisms (synchrotron, ICS) and system expanding.

de e dR orc
e.g. (from Amato 2024 arxiv.) G = 3Ry (1) dtN Sﬁ(écg)2 (1/2/3Bn(t))%e

Results on total PWN electron number :
(Giacinti et al. 2020, Woo et al. 2023, Amenomori et al. 2023, H.E.S.S. Collaboration et al. 2019)
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ll1l. Results

Rsne  Rpwn P, P, Ey E, Ecy E,
AINEName 005 el mms] x10-2s/s] V0%l ey [Tev] [Tev) [Tevy ! 12 Refs
J1833-1034 298 0.8 618 2.02 BPLI 0.1 0.39 i 0 22 - 1,2
J1513-5908 384 192  151.6 15.3 BPLI 0.1 0.61 i 0 22 - 1,2
J1930+1852  10.8 2.7  136.9 7.50 BPLI1 0.1 0.89 i 0 22 - 1,2
J1846-0258 2.6  0.58 326.6 71.1 BPLI 0.1 0.40 i 0 22 - 1,2
J0835-4510 19.5 122 893 1.25 BPLI 0.1 0.61 i 0 22 - 1,2
J1747-2809 19.8 25 522 1.56 BPLI 0.1 0.17 i 10 22 - 1.3
1202143651 - _ 1037 0.957 PLEC 1 25 900 1400 14 - 4
J1841-0345 - - 112.9 1.55 PLEC 1x10> 7.0 72 740 22 - 5
J1849-0001 - : 38.5 0.142 PL 0.5 10 i 100 25 - 6
J1826-1334 - -~ 1015 0.753 BPL2 0.7 0.9 i 42 14 325 7
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Py E; Nei Ee,tot <K>
ATNF Name [ms] [x10%¢ erg/s] [x10* Counts] [x10* erg] [Dimensionless]
J1833-1034  33.0 33.9 45.6 51.8 1476
J1513-5908 15.2 17.0 5.14 8.35 809
J1930+1852 41.3 12.0 5.06 11.0 432
J1846-0258  50.8 8.13 1.62 1.87 1061
JO835-4510 10.9 6.92 18.7 1.87 174
J1747-2809 47.9 42.7 125 71.4 29328
The 7 in the right two plots are derived from:

Ecr ~ 1.2 X 10*Asen{(k)imalss B3 R, 5775

(Kotera, Amato & Blasi 2015 JCAP)

lIron cosmic ray could be photodissociated in
the pulsar vicinity.

K is related to radiation. The above equation
describes the maximum <k> to allow comic
ray (iron) energy Ecr to escape.
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Py E; Ny Ee 1ot (K

AINF Name [ms] [x10%¢ erg/s] [x10* Counts] [x10* erg] [Dimensionless]
J1833-1034  33.0 33.9 45.6 51.8 1476
J1513-5908 15.2 17.0 5.14 8.35 809
J1930+1852 41.3 12.0 5.06 11.0 432
J1846-0258 50.8 8.13 1.62 1.87 1061
JO835-4510 10.9 6.92 18.7 1.87 174
J1747-2809 47.9 42.7 125 71.4 29328

Circular dots: <k> derived through the
method in Section II.

If <k> is above <k>im, hadrons are less

likely to escape into PWN.

For J1747-2809, it seems to be this case.
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(k) [Dimensionless]
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<K>Vv.S. Po for four LHAASO sources.
Due to lack of radio observations, SNR & PWN sizes are
unknown. No reliable Po is estimated.

=» Radio interferometric images are required in the future.
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In addition...

Parameter spaces
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