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l. Intro to pulsar radiation
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Theories predict that there exists places
where E-B#0 (such as vacuum gaps), at
which a series of particle processes happen.
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The paper considers
inner acceleration gap
or inner acceleration region (IAR).
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Particle acceleration and plasma’s formation:
Take pure vacuum gap (like RS 75) for example:
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Bunches of electrons/positrons flow out of vacuum gap,
produce coherent radio radiation......



pure vacuum gap =» =2 =2 sub-pulse drifting:
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From Ruderman & Sutherland 1975



Challenges: more complex drifting phenomena (bi-drifting...)
(and drifting speed, binding energy...)
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Gil, Melikidze and Geppert 2003: Partially Screened Gap (PSG) model.

- Non-dipole magnetic field near pulsar surface.
- Positive ions continuously flow out.

=>=>=>» ExB variable (drifting is locally decided).



Way to figure out magnetic field (polar cap) structure:
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ll. Geometry measurement
Observation: J1034-3224 and J1720-2933, GMRT

PSR P P v We Wso Wi  Rppa « Qm & P
(s) (ss77)  (MHz) (") (") ) () (") (") ) ) (km)
1034—3224 1.15 2.3x107'® 325 7.4+40.9 80.2+1.8 2.37 995 174420 16.6/163.4 +1.6 11.9 4+0.14 1073
610  7.1+0.2 68.9+0.4 2.16 16.540.5 10.3 +0.16

J1720-2933 0.62 7.5x 107 325 50402 257404 237 -6.6 37.14+1.7 383/141.7 +54 9.2 +0.59
610  4.240.2 24.1404 2.16 40.342.3 8.8 +0.61
. . _{:‘}'5 .
Profile half width We = WgP /SIHCE

(from Mitra et al. 2016):
PPA steepest gradient: R,,, = | sin a// sin j3]

Beam angle:  sin“ (p, /2) = sinassin (o + B) sin® (W5, /4) + sin® (8/2)

- e P )2
Emission height: hy_l()P(L230 km
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et al. (2016), and we carried out RVM fits to obtain R,,, for each pulsar (the detailed RVM fitting process for the
pulsars in the MSPES survey, including the two reported here, is shown in Mitra et al. 2023, in preparation). The o« 10



Drifting properties for J1034-3224:

PSR J1034-3224 Freq=339.33 MHz nfft=256 Peak(LRFS)=0.14
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Drifting properties for J1720-2933:

PSR J1720-2933 Freq=339.33 MHz nfft=1024 Peak(LRFS)=0.41
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l1l. Model related to observation

o : d = BqR%, By = 102(PP_15)"° G
Magnetic field settings:

o
Non-dipole field
€ => A star centered dipole field (x-z plane) 4 = (d,6,,0°) Y
+ some weaker dipole fields on star surface L /
m; — (mia an, qﬁjn) r; = (T§7 9;’ gb;) e

R ~ boundary

m = 0.01d rs = 0.95Rg %&‘\ -
/’dﬁ»\

Polar cap located at:  (Rg, 0¢,,, ¢¢,,) Rs =10° cm ’6'%"“

cap

0 S0 g
Polar cap and sparks: elliptical, major axis @, minor axis b . X

Effective size of sparks:  h ~ \/ AsprkDsprk




Potential difference in the gap:

Non-dipole/Dipole
4mnbB 4| cos o;
AVpsg = TIPSy _ BB,

Screening factor: 7 =1/(27Ps|cosul) =1 — p;/pg

Polar cap temperature:

o \Y2 (P
T; = (nb)'/? | cos ay|*/4 ( = ) ( l”) x 10° K

2.0m P
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oy, the angle made by the local non-dipolar magnetic field with the rotation axis
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Numerical calculation results:

Table 2. The physical parameters of Partially Screened Gap

(m) (m) () ) ) (m) (10° K) (10" V)
J1034—-3224 36.2 15.1 -45.5 166.5 -48.8 ~ 67 ~ 0.65 0.034 4.3 1.17 1.56
J1720-2933 75.2 30.1 -36.8 37.1  20.9 ~ 32 ~ 0.2 0.26 8.8 3.93 22.4
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Polar caps:
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Simulation results:
J1034-3224:

LOS
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Simulation results:
J1034-3224:
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Simulation results:
J1720-2933:

LOS
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Simulation results:
J1720-2933:
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