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l. Introduction

Subpulses in single pulses: various polarization patterns.

— => Linear polarization
_ 20 \ =>» Circular polarization
3_52: " =>» Polarization angle (PA) swing
N, =>PA jump (especially 90° jump)

Subpulses =» Depolarization
\ j =>» Above phenomena’s relation with subpulse position
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“A severe burden on any theoretical mode
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e.g., one single pulse of B0943+10.
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Briefly think: about magnetic fields and electrons/positrons...

O mode (main axis)
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&K O & E(X) mode: different dispersion relation
’ =>» Propagate differently.

Strorg field = gyro motion “cease”

o . (1) How radiated?
Curvature radiation & bunching...

=>»initial polarization linear/circular...

(2) How propagate?




ll. Linearly Polarized Normal Modes

Adiabatic walking: independent propagations of orthogonal modes.

“Adiabatic”: [z’{% An| « |An] AN = No - Ne

Plasma properties (refraction indices) change slow enough.
=>=>=>» Wave modes are independent.
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“Walking”: < |An|

®: PA (or other similar dimensionless parameters about polarization).

Polarization changes slow enough.

=2 =>»=>» Wave modes polarization follow the local magnetic field.
(parallel(O) or perpendicular(E))



Consequences for different ways of acceleration:
(radiation propagates further with local magnetic field changing, if adiabatic walking holds)
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| E-MODE AND O-MODE FROM |PERPENDICULAR| ACCELERATION
Under assumption:

electron/positron distributions are nearly symmetric near emission region.
And, w < y,eB/mc.  (so, all linear polarization...)



Question |: how good is adiabatic walking near emission? =2 needs some quantitative analysis.

Expression for An (Melrose & Stoneham 1977): Particle num density: 7 « p~— 3
0 = <k,B>, ighore refraction
2 qin2 @ 9 -1
An = s—gg P —— f(w), (4) ~ Y
20°y*(1 — B cos 0)° If only a single y:
with ~
B=v/c, w,? = 4mne’lm, (5)
d 2 rg\ 2
o An ~ ——5 —2 ('"E)
flw) = (eB/mc)? .6 Yw (0% + yu ™) \ 7
= (eB/mc)? — y2w?(1 — B cos 6)?
/ ‘ Near emission region
Radiation freq (from bunching): @? =[‘)’w“’zoz]e An~1/y?
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Question |: how good is adiabatic walking near emission? =2 needs some quantitative analysis.

Particle num density: n

\ B = <k,B>, ignore refraction
1

0 ~ Yw
Alrg < If only a single y:
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“Walking”: I A Bs ¢ | < |An]
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O-MODE ﬁ curvature ‘ Near emission region
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Curvature radiation critical frequency



Question |: how good is adiabatic walking near emission? =2 needs some quantitative analysis.

o . . — _3
“Adiabatic”: I’){_a“ An| « |An] Particle num density: 7 < p
0s \ 0 = <k,B>, ighore refraction
X 1 0~ yu™*
re < Y< < Yw
0
“Walking”: I A Bs ¢ | < |An]
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O-MODE ﬁ curvature ‘ Near emission region
1 2

An~1/y?
w > ‘y..:SCK

Easier to satisfy



Question Il: parallel or perpendicular acceleration? =» energy (power) comparison.

24° 2q° ,
P_Ec_a - = 33 (a“ +az)
Parallel acc (“pure” bunching radiation): >
(in particle originally rest frame) YR (@’ +y’a})

Rybicki & Lightman
Radiative processes
in Astrophysics

W > Weyry

=>=>» pure O mode

W < Weyry D= 0 & E mode, E dominate, O suppressed
(Razin effect, no<ne~1, 9{,""’\/1 -nB* )




lll. Orthogonal Mode Transitions
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Two orthogonal polarized incoherent beams: 1o
=»sudden jump when |1 = |2 100
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(2) Parallel acceleration v.s. perpendicular acceleration

Recall that:

— n, 3
Weyurv = '}’w CK
could vary on pulse phases.

172 - _
OJ2 m[?wwpz]e yw W= W = W

=>»proportions of O & E mode could vary, too. WCURV > WO
—xXx— " Ywv “
/\,\, ) Weyry < Wg

An example: w,? = 4miie’/m changes because of K - v ‘B

. . L B
particle density variations. / é \
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V. Arise of Circular polarization ( % g1l

.

Firstly, recall: what makes linear polarization? .
(1) Adiabatic walking CB/
(2) Strong magnetic field w < y,eB/mc |
(3) Electron/positron symmetry [not all need...?] . = LONGITUDE
{ 2 3
Case 1: (1) fails (within light cylinder) while (2) & (3) hold. LONG;TUDE
1
At ro re < ro < I'e PROJECTION OF TWISTED B, / - \
Outer magnetosphere: B_L arises POLARIZATION BEFORE 3 3 3
because of (rotation) (outward currents)... POLARIZATION AFTER. \ : /
ADIABATIC WALKING
Circular polarization arises. O y POLARIZATION AFTER.. O 3 r)
£o

N »<—u—>
could cause circular polarization reversal



Firstly, recall: what makes linear polarization?

(1) Adiabatic walking
(2) Strong magnetic field w < yy,eB/mc
(3) Electron/positron symmetry

Case 1: (1) fails (within light cylinder) while (2) & (3) hold.

At ro rge < g < I
Estimate 7o: break of Ax < An Iﬁ-(%qb < |An|
K~ r'lc“1

ro ~ Yw P(rerg)t’?

2 [rg\3
An ~ '}’w492 (7)
w ~ 7 2elrsne) 12

0 ~ r/r;
(Abberation)

- 1/5
~ WIeYw / )
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w: width of pulse ~ 0.1

Tic n Tlc 3
A~ EJ Ani;’k-dr ~ 2 [ e (f'—-’-"-)
To

=> Fo within light cylinder.

Beyond rq, birefringence
introduce phase difference
between new O & E modes.
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May not be large enough...



Firstly, recall: what makes linear polarization?
(1) Adiabatic walking

(2) Strong magnetic field w < yy,eB/mc

(3) Electron/positron symmetry

Larger An, larger At

Normal modes are
elliptically polarized.

. (2)(3) fails (within light cylinder) before (1) fails.

Circular polarization

Electrons/positrons have different Vs.
dependson B.S

(1) holds: Ak « yw}isﬁz (%)3 Ve < Vo
(2) holds (quantitatively from Melrose & Stoneham 1977):
]l « es
mcw@?y _°

(2) fails before (1): not difficult within light cylinder (even near emission).

2rz°w?m

m k < 1078cm~1
wCOg

< ~ (re)

K <



Inner magnetosphere: Adiabatic walking
=>» Polarizations follow magnetic field

Incoherent mixing & competition between 11 & L
=» OPM transitions

Adiabatic walking fails
Asymmetry between e-+ & B diminishes
=» Circular polarization

Thank you for your attention ©



