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Pulsars have strong magnetic field, but magnetized plasma’s flow makes
magnetospheres force-free (E·B~0) almost everywhere.

Theories (like RS75) predict that there exists places where E·B≠0 (such
as vacuum gaps), at which a series of particle processes happen.

I. Introduction:
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Bunches of electrons/positrons flow out of vacuum gap, 
produce coherent radio radiation……

E·B≠0

e± are accelerated
along magnetic lines

Curvature radiation
produces photons

Photons produce
e± pairs

e± flow, screens
the electric field

Pair Cascade
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Difficulties in computer simulating pulsar pair cascades: 
——large multiplicity
——vacuum gaps (~100m) much larger than shortest plasma kinetic scales (~1cm)

One solution is using heuristic models, with PIC simulation.

The authors suppose a threshold energy for the particle processes,
and begin their analytical and numerical study.
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II. Cascade in a uniform electric field:
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l± ≈ 100m
lγ ≈ 1~10m

Ɛthr ≈ 10^7 mc^2
f ≈ (10^-6) ~ (10^-3)

➔➔➔Neglect lγ
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After                        , all n2 
particles change into n1.
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After                        , all n2 
particles change into n1.

After        , all n1 particles
produce two n2 particles.
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Try: 
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We have:

W: Lambert function.

An exponentially
growing solution.

z=W(z)e^(W(z))
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Simulation: 1D particle-in-cell, with OSIRIS (Fonseca et al. 2002)

Particle-in-cell (PIC) method:

Simulation domain length:

Uniform E field E0:

Grid resolution:

O(N^2) O(N)

Ebersohn et al. 2014



13

Simulation result:

After 0.02L/c ?
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The e± number growing ➔➔➔current growing ➔➔➔screen E field

➔➔➔The reversed E field decelerates e±, prevent growing…

E field begins oscillating, no new e± produced.

➔➔➔The instable perturbations accelerate some e± again, making pair
production, dumping E field.
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Perturbations ➔ reacceleration ➔ pair production

Phase space at a certain time:
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Similar results.

Next step: more complex and realistic E field.
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III. Cascade in a linear electric field:
Consider a 1D vacuum gap near pulsar surface.

Assume

In the corotating frame:

^^

=

magnetosphere

< 0
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Positrons                      inflow, making the gap grow at a velocity vf: 

GJr  += = −

fj v=
m GJ fj v=

Pair cascade requires:                                           (Beloborodov 2008) (Timokhin and Arons 2012)
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E=E(x,t)  ➔➔➔

Very complex…
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Analytical attempt: consider a thin layer, ta and tp slowly evolve.

We have:
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Plug in (WKB approximation):

Then we have:

Assume Γ varies slowly during ta:

~

( )at t= 

*

at : the time n(t) start
exponentially growing.
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Solution:

However, 
( ) ( )

( )
2 ( )

at t t
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Notice that ta and ta* have similar meaning:

➔➔➔ Assume ta≈ta*(1+Ct),  C<<1

*

( )
2

aCt
t = −

？
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Simulation (1) —— a single electron:    γthr=1000, grid solution Δx/L=0.001

f ↓ Growing ↑

Consistent with:

The electron layer reaches E=0 (gap front)
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t ↑ Growing ↓
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Not yet purely exponential.
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Simulation (2) —— an initially uniform positron distribution in linear E field.

Positrons flow towards x~0 ➔ Electrons produced ➔ Electrons produce layers of cascade.

f=0.01
vf/c=0.9
ΔxL=0.0025L

… 5 4 3 2 1
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Each layer:
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Varying growth rate ➔ non-uniform electron density distribution.

Electron density spatial profile:

Electrons farther from
the front are created 
with larger time lags.
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Consider time lag ≈ ΔxL/c between layers, and we have:

ΔxL→ 0:

To calculate the
E field screening time.
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At any position, when                         , the E field there get screened.( ) mn e c j− − =

m GJj cWe have:

Former simulation (Timokhin 2010; Timokhin and Aron 2012; Cruz, Grismayer and Silva 2021) shows:
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The screen time is about:
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Consistent with (Timokhin and Harding 2015).



IV. Conclusion:

Such heuristic model provides an important
way to associate QED processes with plasma
kinetic effects.

Some more complex settings may be applied
in the future.


