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l. Introduction:

Pulsars have strong magnetic field, but magnetized plasma’s flow makes
magnetospheres force-free (E-B~0) almost everywhere.

Theories (like RS75) predict that there exists places where E-B#0 (such
as vacuum gaps), at which a series of particle processes happen.
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Bunches of electrons/positrons flow out of vacuum gap,
produce coherent radio radiation......
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Difficulties in computer simulating pulsar pair cascades:
——large multiplicity
——vacuum gaps (~¥100m) much larger than shortest plasma kinetic scales (~¥1cm)

One solution is using heuristic models, with PIC simulation.

The authors suppose a threshold energy for the particle processes,
and begin their analytical and numerical study.



ll. Cascade in a uniform electric field:
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N2 After ftq, all n1 particles
produce two n2 particles.

ta — (3/2)t, Time. ¢t Afterta(l-3£/2) ,alln2

particles change into n1.
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{nl(t +1a(1—3//2)) = ni(t) + na(t)

dna(t)  2nq(%) no(t)
dt  fta (1 -=3f/2)t,
Try: n12(t) < exp(I't)
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W: Lambert function. growing solution.
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Simulation: 1D particle-in-cell, with OSIRIS (Fonseca et al. 2002)

Particle-in-cell (PIC) method: Unitorm E tield Eo:
eEo(c/wy)/mec® ~ 3000 > 1
_ 2
Interpolate Charge to Grid /! UJp o (47T€ no/me)
| Cell Center ' :
Ca":“jgf‘e'ds 0, I Simulation domain length:

Interpolate Fields to Particles K, B

. L/(c/w,) ~ 30
Update Particle Velocity V
. : Update Particle Position X G rld FESOl ution:
- Particles
Grid for Computational Domain Aﬂf/(C/wp) — 0015

Ebersohn et al. 2014
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Simulation result:

iy mmmmn
=) 0.8 | (1) W Lo
= LULLLLLS e K Wg = [(E?/87) dx
« 0.0 |
E’" Wk = Zz(% — 1)m602
=04
=

(T
0'2 II|I : I. 'I [ [I{| :I Wil | I ==
11U |"I|| :' (1] ::III:A' y _.“____________.0-;00"_"__--0.02 0.04

T o 0.2 0.3 0.4 .= After 0.02L/c?

13



The ex number growing = =2 =»current growing =@ =2 =»screen E field
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=>=>=>The reversed E field decelerates e+, prevent growing...
E field begins oscillating, no new e+ produced.

=2 =>»=>The instable perturbations accelerate some e+ again, making pair
production, dumping E field.



Phase space at a certain time:
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Ythr — H00 — 5000

f=10"3-0.1 Similar results.

Next step: more complex and realistic E field.



l1l. Cascade in a linear electric field:

Consider a 1D vacuum gap near pulsar surface.
Assume é:ﬂ

In the corotating frame:
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Positrons P+ = 7|pai| inflow, making the gap grow at a velocity Vf:
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Pair cascade requires: 1/3 < ”Uf/c < 1 (Beloborodov 2008) (Timokhin and Arons 2012)
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Analytical attempt: consider a thin layer, ta and tp slowly evolve.
vf/c 2 0.7 and f < 0.05 7

We have:

tp(t) = fta(t)

ta(t) —3t,(1)/2 >~ t,(1)
Then:
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Plug in (WKB approximation):

)
nl,Q(t) X eXP (/ F(t,) dt,) ta : the time n(t) start
Lo

exponentially growing.

Then we have:
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Solution:  T'(t)t.(t) = . +1¢(t)W (1 +;D(t))
[(t)t, (t
However, y(t) = T (1)
21 (1) *
. - . Ct
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vthr=1000, grid solution Ax/L=0.001

Simulation (1) —— a single electron:
I
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Consistent with:

[(t)ta(t) =~ W(L/f)

The electron layer reaches E=0 (gap front)
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Not yet purely exponential.
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Simulation (2) —— an initially uniform positron distribution in linear E field.

Positrons flow towards x~0 =» Electrons produced =2 Electrons produce layers of cascade.

t=10.21. LLje
EEERERERE
1000 { ) RN
EEERERERE
EEERERENE
200 - AR
R f=0.01
AR R
p B ERERREES vi/c=0.9
BRERREE Y
o Ax1=0.0025L
400 - LI I A B
1Ll
NN
NERN
200 - i:
) | B |
0.00 0.02 0.04 0.06 0.08 0.10
z (L]
..04321

28



N_

LO1 —

> E front

-= theory

0.16

0.18

0.20
t [L/c]

0.22

0.24

Each layer:

a) ve/c=0.6
105 -
= 103 -
— [ =0.005
— f=0.01
101 i - f = 0.05
— f=0.1
0.0 0.1 0.2 0.3 0.4 0.5
t [L/cl
1201 ¢) f=0.05, v¢/c=0.7 — simulation
100 - == theory
<)
—
2,
—

29



Varying growth rate =» non-uniform electron density distribution.

Electron density spatial profile:
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Consider time lag = Ax./c between layers, and we have:

n_k(t) 2n_ gr1(t)exp (I'(t)Azy /c)

Ax.=> 0:

tI'(¢)/T(t) < 1

To calculate the
E field screening time.

11 — simulation
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At any position, when n_(—e)c= ], the E field there get screened.
OF

| i i
We have: |~ pg;C ot J = Im)

Former simulation (Timokhin 2010; Timokhin and Aron 2012; Cruz, Grismayer and Silva 2021) ShOWS:

n, ~001~0.1 Po|
e
The screen time is about:
L, NN ~t =107 ~10"°s
r W(/f)

Consistent with (Timokhin and Harding 2015).



V. Conclusion:

Such heuristic model provides an important
way to associate QED processes with plasma
kinetic effects.

Some more complex settings may be applied
in the future.



