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脉冲星辐射在磁层中传播过程

脉冲星磁层中的传播过程决定了辐射的偏振末态。研究传播过程

主要是考虑磁层中波模的特性，即不同模式的色散关系和偏振本

征态。脉冲星磁层，或者说更一般的磁化等离子体的一个基本特

性在于双双双折折折射射射：磁场破坏了对称性，类似晶体中的光轴，引入了

寻寻寻常常常波波波模模模 (Ordinary mode, O mode) 和非非非寻寻寻常常常波波波模模模 (Extraordinary

mode, E/X mode). 强磁场中的它俩在观测上对应了脉冲星辐射

中的正正正交交交偏偏偏振振振模模模式式式 (Orthogonal Polarization Mode, OPM).
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极限偏振 (limiting polarization)1

射电波从脉冲星磁层中出来的过程中，一定会经历一个磁层粒子

数密度降低的区域。当粒子数密度足够低的时候，磁层不再对射

电波有影响，这时我们可以说射电波的偏振已经被决定了，不再

变了。这个不再变的偏振往往被称为极极极限限限偏偏偏振振振 (limiting

polarization). 若想定量描述射电波偏振行为，极限偏振是必须

考虑的。极限偏振被决定下来的区域，在脉冲星磁层中一般

叫limiting polarization region或polarization limiting region (PLR).

1这个中文翻译参考了金兹堡的《电磁波在等离子体中的传播》的翻译。
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研究极限偏振的一个难点在于介质不不不均均均匀匀匀，这种不均匀性会引

起波模之间的耦耦耦合合合。今天我们来看看极限偏振理论在脉冲星磁层

中的一个应用：解释脉冲星信号中的圆偏振。报告基

于Lyubarskii与Petrova于1999年发表在Astrophysics and Space

Science的文章“ON THE CIRCULAR POLARIZATION OF

PULSAR RADIATION”.
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目标：圆偏振

脉冲星辐射中的圆偏振：

通常不如线偏振显著

有的在脉冲经度区间里符号相同

有的存在圆偏振变号，且经常在轮廓中心位置

圆偏振的产生机制分成两类：辐射机制产生圆偏振；传播过程产

生圆偏振。
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脉冲星磁层基本特点

偶极磁场主导，表面磁场很强 (108–1012 G)

电子-正电子等离子体，相对论性 (γ ∼ 102)

如果磁场可看作无穷强，本征波模是线偏振的 (后面也会看

到)

射电辐射来自开放磁力线区

在恒定无穷强磁场的均匀介质中，O模在波矢k与磁场方向矢

量b张成的平面内，X模则垂直于这个平面.
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极限偏振半径 (polarization-limiting radius)

回顾三周前介绍的Budden 1952电离层文章，在导出波模耦合方

程后，Budden引入了一个描述耦合程度的参数：

ψ =
i

R2
O −1

dRO

dh
(1)

RO = EO,2/EO,1是O模式的偏振参数 (也可用X模的)。ψ足够小

时，耦合就不复存在。对于高频波来说，ψ的临界值约为：

|ψ| ≈ k|nO −nX|/2 (2)
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极限偏振半径 (polarization-limiting radius)

ψ可表征偏振的变化率，或者介质参数的变化率。在脉冲星磁层

中，ψ与磁力线的曲率半径量级一致，因而也跟与脉冲星中心之

间的距离在同一量级。记磁层中波模之间发生显著耦合的位置距

离脉冲星中心rp，即极限偏振半径，它满足：

ω

c
|nO −nX|rp ∼ 1 (3)

[Cheng and Ruderman, 1979]、[Barnard, 1986]等文章利用这个公

式对极限偏振半径做了估计，对于1 GHz的电磁波，周期为1秒

的、表面磁场1012 G的脉冲星磁层中极限偏振半径约为1000倍中

子星半径。
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文章的大致结构

首先列出基本方程，推导出脉冲星磁层中磁场近似无穷强情形下

的波模耦合方程。考虑由于转动导致的变化的磁场，在一些极限

情况下给出末态的偏振，计算圆偏振度。

本文档不会展示所有计算细节，但会说明文章推导中使用的近

似。
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麦克斯韦方程组和电荷守恒 (1)

射电波的电磁场 (扰动场) 满足：
∇×B =− iω

c
E+

4π

c
j1

∇×E =
iω
c

B
(4)

其中j1是扰动电流。本文假设未扰动的e±速度v0与数密度n0分布

都相同，故未扰动的电流j0 = 0，扰动电流可写为：

j1 = (n0 +n+1 )(+e)(v0 +v+1 )+(n0 +n−1 )(−e)(v0 +v−1 )− j0

= e[v0(n+1 −n−1 )+n0(v+1 −v−1 )]
(5)
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麦克斯韦方程组和电荷守恒 (2)

j1满足电荷守恒方程为：

−iωe(n+1 −n−1 )+∇ · j1 = 0 (6)

以上的方程均已采用谐振解，∂/∂ t =−iω
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带电粒子运动方程 (1)

首先，相对论粒子在外电磁场中的一般运动方程为：

d(γmv)
dt

= e[E+v×B/c] (7)

在近似无穷强的、旋转2的背景磁场中，可将带电粒子视作被串

在磁力线上运动，即将粒子运动简单分成两部分：沿磁力线的运

动，和跟磁力线一起转的运动：

v = vbb+Ω× r (8)

2如果磁场对称中心与自转轴重合，就没有磁场旋转。
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带电粒子运动方程 (2)

把一般运动方程7展开：

γm
dv
dt

+ γ
3mvv

dv
dt
/c2 = e[E+v×B/c] (9)

考虑到γ ≫ 1，上式左边只保留γ3项。且由于vb ≫ |Ω× r|以

及vb ≈ c，上式左边可进一步改写为：

γ
3m

vb

dt
b (10)

运动方程最终改写为 (其中d/dt =−iω +v± ·∇)：

γ
3m

v±b
dt

=±e[E+v×B/c] ·b (11)
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两个麦克斯韦方程4、电荷守恒方程6和运动方程11构成对电磁波

波-磁层等离子体相互作用的自洽的描述。由于极限偏振区域粒

子数密度低，波模的折射率都接近1，可以不考虑折射。取波矢

方向为z轴，只需要考虑z方向上的参数变化。

方便起见，把速度分解也代入电流表达式：

j1 = e[vb(n+1 −n−1 )+n0(v+1 −v−1 )]b+e(n+1 −n−1 )(Ω×r) = jbb+ jΩ×r

(12)

把正电子和电子的运动方程相减 (得到都是n+−n−的形式)：

γ
3m
[
−iω(v+1 − v−1 )+ v0z

d(v+1 − v−1 )
dz

]
= 2e

[
E− i(Ω× r)× (∇×E)

ω

]
·b

(13)
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空间分量的分解

由于折射率接近1，波动的空间分量应该接近exp(i
ω

c
z)，于是可

以把扰动量写为：
Ex,y,z = ax,y,z(z)exp(i

ω

c
z)

jb = aj(z)exp(i
ω

c
z)

n+1 −n−1 = an(z)exp(i
ω

c
z)

(14)

其中振幅aµ(z)是z的缓慢变化的函数，满足：

daµ

dz
≪

aµω

c
(15)
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耦合方程推导 (1)

在麦克斯韦方程中消去B，再引入一个量：

q =
b× (Ω× r)

c
(16)

代入上一页的空间分量分解，利用振幅缓慢变化的特定舍去高阶

导数项，首先得到电场分量方程：

dax

dz
+

2π

c
[ajbx + ean(Ω× r)x] = 0,

day

dz
+

2π

c
[ajby + ean(Ω× r)y] = 0,

az +
4πi
ω

[ajbz + ean(Ω× r)z] = 0,

(17)
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耦合方程推导 (2)

加上电荷守恒：

ean

[
1−
(

Ω× r
c

)
z

]
−

aj

c
bz = 0 (18)

运动方程：

−iω(aj − evban)

[
1− vb

c
bz −

(
Ω× r

c

)
z

]
=

2e2n0

mγ3 [ax(bx +qy)+ay(by −qx)+azbz]

(19)

从5个方程中消去az, an和aj
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耦合方程推导 (3)

引入一个参数R：

R =
4πn0e2/m

ωcγ3(1−βz)2 =
ω2

p

2ωcγ3(1−βz)2 (20)

其中βz =

(
Ω× r

c

)
z
+

vb

c
bz. 在高频波近似下 (Rc/ω ≪ 1)，整理

可得波模耦合方程：
dax

dz
=−iR[(bx +qy)

2ax +(bx +qy)(by −qx)ay]

day

dz
=−iR[(bx +qy)(by −qx)ax +(by −qx)

2ay]

(21)
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均匀非转磁层情形

在均匀非转磁层中，q = 0，R和b都不依赖于z. 并且扰动空间分

量应正比exp(i
ω

c
nz)，即aµ(z)正比exp(−i

ω

c
(1−n)z)，于是耦合方

程化为：Rb2
x −

ω

c
(1−n) Rbxbyay

Rbxby Rb2
y −

ω

c
(1−n)


ax

ay

= 0 (22)

矩阵行列式为0，可得折射率n的两个解，即两个色散关系：

n = 1−
ω2

p

2ω2γ3

b2
x +b2

y

(1−βz)2 , n = 1 (23)
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两个本征波模

这两个色散关系对应的本征矢量（本征波模）分别为：

−byax +bxay = 0, bxax +byay = 0 (24)

前者平行磁力线平面，后者垂直磁力线平面。依照前面的定义，

前者是O模，后者是E/X模。这两个解最早

由[Melrose and Stoneham, 1977]给出，是讨论磁层传播特性的基

础之一。下面考虑旋转，以解析更真实的传播过程。
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旋转磁层中的非耦合解 (1)

对耦合波模方程采取 (类WKB的) 试探解ax,y = a(0)x,y exp[G(z)]，

得：
da(0)x

dz
+a(0)x

dG
dz

=−iR[(bx +qy)
2a(0)x +(bx +qy)(by −qx)a

(0)
y ]

da(0)y

dz
+a(0)y

dG
dz

=−iR[(bx +qy)(by −qx)a
(0)
x +(by −qx)

2a(0)y ]

(25)

当Rz ≫ 1且G与Rz在同一量级时，可忽略da(0)x,y/dz项，得到新的本

征方程：dG/dz+ iR(bx +qy)
2 iR(bx +qy)(by −qx)

iR(bx +qy)(by −qx) dG/dz+ iR(by −qx)
2

a(0)x

a(0)y

= 0 (26)
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旋转磁层中的非耦合解 (2)

取行列式为0，得本征值以及本征矢量解为：
(

dG
dz

)
o
=−iR[(bx +qy)

2 +(by −qx)
2](

dG
dz

)
e
= 0

(27)



(
a(0)x

a(0)y

)
o

=
bx +qy

by −qx(
a(0)x

a(0)y

)
e

=−
by −qx

bx +qy

(28)

从式27也可见G与Rz在同一量级的假设成立。如果没有旋转

(q = 0)，则本征模式退回到均匀磁层的情形。
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旋转磁层中的非耦合解 (3)

我们发现，当Rz ≫ 1（n足够大或γ足够小）时，空间每一点处的

本征模式，与一个参数与该点相同的均匀介质中的本征模式，是

一样的。这与Budden 1952文章电离层中的结论一致，在这种情

况下波模独立传播，几何光学近似/WKB近似成立。式28反映了

内层磁层中波模“跟随”局域磁场的特性，

即[Cheng and Ruderman, 1979]提出的“Adiabatic walking”.
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旋转磁层位形 (1)

当Rz ∼ 1时，非耦合解就不成立了。首先需要得出b和q对z的依

赖，这取决于磁场位形。我们这里只考虑旋转偶极场，而磁层电

流引起的磁场扭转是更高阶的效应。

假设波矢与磁轴夹角δ (小角度)，初始时刻磁场在z− x平面内，

则初始的磁场方向为：

b = (sin(δ/2),0,cos(δ/2))≈ (δ/2,0,1−δ
2/8) (29)
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旋转磁层位形 (2)

加上旋转，假设自转轴与磁轴夹角α，与波矢夹角ξ，自转轴、

磁轴、波矢不一定共面，因此|α −ζ | ≤ δ .

经过一些矩阵运算后，结合小角近似我们得到：
bx =

δ

2
+Ωt sinξ

√
δ 2 − (α −ξ )2

δ

by =±Ωt sinξ
α −ξ

δ

(30)
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旋转磁层位形 (3)

以及bz = 1− (b2
x +b2

y)/2. 式子中的t可以用z/c代换掉。有了b之

后可直接算q：

q =

(
∓Ωz

c
sinξ

α −ξ

δ
,
Ωz
c

sinξ

√
δ 2 − (α −ζ )2

δ
,0

)
(31)

以上两式中符号不确定的部分决定于µ · (k×Ω)，或者说是波矢

相对于磁轴和自转轴张成平面（基准平面）的位置。
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转动较慢脉冲星的近似 (1)

要解析求解波模耦合方程，需要代入b和q. 这俩矢量都不简单，

所以比较好做的方式是取一些极限来简化它们。首先我们考虑转

动较慢的脉冲星，让bx的第二项远小于第一项，此时βz可以写

成：

βz =

(
Ω× r

c

)
z
+

vb

c
bz ≈ 0+1 · (1−b2

x0/2) = 1−δ
2/8 (32)

于是R ≈
32ω2

p

ωcγ3δ 4 . 根据极限偏振半径的定义，引入zp满足：

8ω2
p (zp)zp

ωcγ3δ 2 = 1 (33)
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转动较慢脉冲星的近似 (2)

考虑ω2
p ∝ ne ∝ z−3，可将R改写成：

R =
4

zpδ 2

z3
p

z3 (34)

有zp/rLδ ≪ 1 (rL = c/Ω). 再代b和q入耦合波模方程，最后可得：


dax

du
− iuax = i

zp

rLδ
η(4b1ax ±2b2ay)

day

du
=±i

zp

rLδ
2ηb2ax

(35)

其中u = zp/z, η = 2sinξ , b1 =
√

δ 2 − (α −ξ )2/δ , b2 = (α −ξ )/δ .
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转动较慢脉冲星的近似 (3)

等式的右边表现出耦合。如果入射纯线偏振O模，ax0 = Cx,

ay0 = 0, 则可得最低阶的解为：
ax = Cx exp(iu2/2)

ay =±i
2zp

rLδ
ηb2Cx

∫ u

zp/z0

exp(iu′2/2)du′
(36)

当z → ∞，得出射末态解为：
ax = Cx

ay =∓i
√

2π
zp

rLδ
ηb2Cx exp(iπ/4)

(37)
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转动较慢脉冲星的近似 (4)

有虚部出现，代表有圆偏振成分：

ΠV =
V
I
=

i(ayax ∗−axay∗)
axax ∗+ayay∗

=±4
√

π
zp

rLδ
sinξ

α −ξ

δ
(38)

选取特定的参数组，可以实现ΠV > 0.1，得到足够显著的圆偏

振。
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