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Neutron stars: compact celestial object with M~1.4Msun, R ~ 10km.

·Landau 1932: “gigantic nucleus”

(in between: Chadwick 1932: neutron’s discovery)

·Baade & Zwicky 1934: “neutron star”
(result from supernovae)

·Oppenheimer & Volkoff 1939: Tolman-Oppenheimer-Volkoff Equations
(GR spherical static ideal fluid: gravity v.s. pressure)

I. General Introduction: Neutron stars & X-ray binaries

What is                  ?  ➔➔ Equation of State problem.
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Neutron stars’ electromagnetic radiation: 
——From radio, optical, X-ray, to gamma ray.

An example:  accreting neutron star (NS) in a binary.
➔➔can cause thermal X-ray emission. 

A sketch for accreting neutron star’s X-ray emission.
https://chandra.harvard.edu/xray_sources/neutron_stars.html

NS accretes matter from
the companion star

NS surface ρ↑, T↑, p↑

Thermonuclear burning
High-energy photons emission

Stable Unstable

Accreting
X-ray pulsars
(AXPs)
Giacconi et al. 1971
ApJ, 167, 67.

Type-I
X-ray burst

Babushkina et al. 1975
Soviet Astronomy Letters, 1, 32
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Type-I X-ray bursts
(Kong et al. 2000, MNRAS, 311, 2)

Accreting X-ray pulsars
(Nagase 1989, PASJ, 41, 1)

Examples of X-ray light curves.

Let’s see what has been done
in Schatz et al. 2001 ➔➔➔
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Accreting material: Hydrogen rich.
➔rapid proton capture process (rp-process: X+p→Y+…)

(Wallace & Woosley 1981, ApJS, 45, 398)

Hydrogen ➔ rp-process + beta decay ➔ heavier elements

This paper’s finding: a natural termination of this process.

Importance: understanding X-ray lightcurves
➔Reveal NS crust properties (thermal & electrical)
➔➔Figure out Magnetic field evolution, quiescent luminosity (when no burst)
(Brown & Bildsten 1998, ApJ, 496, 2; Brown, Bildsten & Rutledge 1998, ApJ, 504, 2)

➔Understand Gravitational Waves from deformed crust 
(Bildsten 1998, ApJ, 501, 1; Ushomirsky, Bildsten & Cutler 2000, MNRAS, 319, 3)

➔Understand nucleosynthesis of some light p nuclei

II. Paper’s Introduction
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➔Nucleosynthesis of some proton-rich nuclei: if only through p-process in Type II Supernovae: 

Dash line: range of solar system composition.

Mean p-process layer overproduction 
factor (with respect to solar):

(Rayet et al. 1995, A&A, 298, 517)

A severe underproduction of 
Mo, Ru p-isotropes.

➔Need to be solved.
(Other routines?)



8

·Previous rp(p)-process simulation on X-ray bursts:
Review the end points…

Many early studies: based on ending up at          .

Several later studies: larger networks ending in Kr-Y region. 
(e.g., Wallace & Woosley 1981, ApJS, 45, 398)

or a simplified 16 nuclei network ➔ Cd
(e.g., Wallace & Woosley 1984, AIP Conference Proceedings, 115, 319)

More recent: the network has been extended to Sn (Schatz et al. 1998, PhR, 294, 167). 

(The introduction to network calculation lies in Method section later.)

Taam & Picklum 1978, ApJ, 224, 210
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(i) Physical models:

III. Methods

Layer
ρ, P, T

f(F, ε, T, ሶ𝑚, t, …) = 0
(energy equation)
(and pressure balance…)

Nuclear reaction
Network calculation

ሶm

NS

NS

L. Bildsten in The Many Faces of Neutron Stars

Schatz et al. 1999, ApJ, 524, 2

Initial conditions:
X-ray burst: Z = 0.001, ሶ𝑚 = 0.1         
Crust out flow: 0.15MeV/accreted nucleon.

AXP: XYZ=solar, ሶ𝑚 = 40         

g = 
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(ii) Nuclear reaction network calculation: Wolfenstein-Hauser-Feshbach approach
(Bohr 1936; Wolfenstein 1951; Hauser & Feshbach 1952)

n or p

(1) Injection (Pre-collision) (2) Forming a
compound nucleus (CN)

(3) Equilibrium in
The compound nucleus (4) Further

decay…

Refer to 《原子核物理学》卢希庭 9.9节

𝜎𝛼𝛽,𝑙 = 𝜎𝐶𝑁,𝑙 𝛼 𝐺𝑏
𝜎𝐶𝑁,𝑙 𝛼 = 𝜋𝜆𝛼

2𝑇𝛼𝑔𝛼
T: transmission coef

Decay possibility through β
{

Γ: energy level width =  ℏ/𝜏 = ℏ𝑊 = ℏ(𝑊1 +𝑊2 +𝑊3 +⋯)

Σ𝑖𝐺𝑖 = Σ𝑖
Γ𝑖
Γ
= 1

𝐺𝑏 =
Γ𝑏
Γ

𝐴 + 𝑎 → 𝐶 →

𝐵0 + 𝑏0
𝐵1
∗ + 𝑏1
…

𝐵𝑛
∗ + 𝑏𝑛
…

α

β
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Nuclear reaction network calculation: Wolfenstein-Hauser-Feshbach approach
(Bohr 1936; Wolfenstein 1951; Hauser & Feshbach 1952)

𝜎𝛼𝛽,𝑙 = 𝜎𝐶𝑁,𝑙 𝛼 𝐺𝑏
𝜎𝐶𝑁,𝑙 𝛼 = 𝜋𝜆𝛼

2𝑇𝛼𝑔𝛼
T: transmission coef
calculated

Detailed balance:
(散射矩阵元对角项相等)

Decay possibility through β

𝜎𝐶𝑁,𝑙 𝛼 𝑝𝛼
2

𝑔𝛼Γ𝑎
=

𝜎𝐶𝑁,𝑙 𝛽 𝑝𝛽
2

𝑔𝛽Γ𝑏

Refer to 《原子核物理学》卢希庭 9.9节

{

p: momentum 

𝜎𝛼𝛽,𝑙 = 𝜋𝜆𝛼
2𝑇𝛼𝑔𝛼

𝜎𝐶𝑁,𝑙 𝛽 𝑝𝛽
2/𝑔𝛽

Σ𝑖𝜎𝐶𝑁,𝑙 𝑖 𝑝𝑖
2/𝑔𝑖

= 𝜋𝜆𝛼
2𝑇𝛼𝑇𝛽𝑔𝛼/Σ𝑖𝑇𝑖H-F equation:

In this paper, the calculations are done with a code                        ..
(Rauscher & Thielemann 2000, ADNDT, 75, 1)

SMOKER: Statistisches Model fur Kern Reaktionen.

Σ𝑖𝐺𝑖 = Σ𝑖
Γ𝑖
Γ
= 1

𝐺𝑏 =
Γ𝑏
Γ

𝑔𝛼 =
2𝐼𝐶 + 1

(2𝐼𝑎 + 1)(2𝐼𝐴 + 1)
𝐴 + 𝑎 → 𝐶 →

𝐵0 + 𝑏0
𝐵1
∗ + 𝑏1
…

𝐵𝑛
∗ + 𝑏𝑛
…

α

β
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(i) Nuclear reaction network
IV. Results

Ignition density:

Peak temperature:

Rise timescale: 4s              Cooling phase: 200s

From He to the Sc region: 
3α-reaction, (α, p), (p, γ) processes 
(Follow Wallace & Woosley 1981, ApJS, 45, 398).

Wallace & Woosley 1981
ApJS, 45, 398
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Beyond Fe: (p,γ), (α,p), EC/β+decay, reaches (99-101)Sn ~ 80s after burst peak.         

neutron

proton
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Beyond Sn:  105 Sn(p,γ)106 Sb(p,γ)107 Te(γ,α)103 Sn        

neutron

proton

Credit:
NNDC
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106-108 Te: α unbounded by ~4MeV (Page et al. 1994, PRC, 49, 6).
107 Te: a known ground state α emitter (Schardt et al. 1979, NuPhA, 326, 1).

neutron

SnSbTe cycles: two cycles
(1) 105 Sn(p,γ)106 Sb(p,γ)107 Te(γ,α)103 Sn
(2) 106 Sn(p,γ)107 Sb(p,γ)108 Te(γ,α)104 Sn

(1) is stronger than (2).

Change initial conditions: 
can not beyond SnSbTe.

proton
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(ii) Light curves, changes of energy & Abundance

Burning beyond 56 Ni ➔ Extended burst tail.

Some long-lived “waiting point” nuclei.
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SnSbTe cycle: produce 104 Sn mostly (τ = 20.8s).
produce α ➔ 3α increase ➔ energy release ➔ Hydrogen completely burned.

Some long-lived “waiting point” nuclei.
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Some long-lived “waiting point” nuclei.

Credit:
NNDC
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Final abundance (rp process ashes):

(1) Lack of nuclei with A > 107.

(2) Broad distribution of 64 < A < 107.
(due to long-lived waiting nuclei & 
enough helium)
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(i) To bypass SnSbTe cycle?

Only way: a pulsed rp-process.

Between pulses, matter decay to stable nuclei.

➔ Need reignition of ashes  unburned Hydrogen (or) extensive vertical mixing (of nuclei)

V. Discussion

time

rp-process
effective

rp-process
effective

rp-process
effective

rp-process
ineffective

rp-process
ineffective

“Dwarf Bursts”
(Taam et al. 1993
ApJ, 413, 324)
Lower luminosity…

Little unburned Hydrogen
in this paper’s calculation.

(Fujimoto et al. 1987, ApJ, 319, 902)
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(ii) Duration of a burst:
Long enough to match observations.

Type-I X-ray burst example (Kong et al. 2000
MNRAS, 311, 2)
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(iii) Nucleosynthesis:
Large overproduction factors (>1e9 *solar)
of p nuclei 98 Ru, 102 Pd, 106 Cd.

➔To explain solar system abundance’ origin
➔➔1% of them are ejected 
(Schatz et al. 1998, PhR, 294, 167)
➔➔➔The ejection mechanism…(not sure)

· Synthesis of p-nuclei
most likely related to
long burst tails…



Thank you for your attention ☺

The rp-process on accreting NS ends at SnSbTe cycle.
➔Long (~200s) burst duration & long tail.
➔Effective synthesis of 65 < A < 107 nuclei.
➔More p-nuclei produced (than if only SNe II).


