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l. General Introduction: Neutron stars & X-ray binaries

Neutron stars: compact celestial object with M~1.4Msun, R ~ 10km.

"o . )0 considerations)!. We expect that this must occur when the density of matter
-La nda U 1932 glga Nntic n UCIGUS becomes so great that atomic nuclei come in close contact, forming one

gigantic nucleus.

(in between: Chadwick 1932: neutron’s discovery)

super-nova now confronts us. With all reserve we advance the view that a super-nova

. . )) represents the transition of an ordinary star into a neutron star, consisting mainly of neutrons.
-Baade & Zwicky 1934: “neutron star | S
Such a star may possess a very small radius and an extremely high density. As neutrons can be
(result from supernovae)

-Oppenheimer & Volkoff 1939: Tolman-Oppenheimer-Volkoff Equations
(GR spherical static ideal fluid: gravity v.s. pressure)
du/dr=4mp(p)r?

dp p—l—p(p)[4 st What is p(p) ? =»=» Equation of State problem.
—_— amhbritu |
dr r(r—2u)




Neutron stars’ electromagnetic radiation:

——From radio, optical, X-ray, to gamma ray. NS accretes matter from

the companion star
An example: accreting neutron star (NS) in a binary.

=>»=»can cause thermal X-ray emission.
NS surface p ™, T, p

l'mgm'tit’p W
o b 115} /
Thermonuclear burning
, High-energy photons emission
Stable / \ Unstable
' Accreting Type-|
X-ray pulsars  X-ray burst
Infalling gas nagnetic fel (AXPS) Babushkina et al. 1975

: . , , Soviet Astronomy Letters, 1, 32
A sketch for accreting neutron star’s X-ray emission. Giacconi et al. 1971

https://chandra.harvard.edu/xray sources/neutron stars.html ApJ, 167, 67.



counts/sec

150

100

50

o

200

100

&

200

100

0

Cen X—_3

10-20 keV

SN

6-10 keV

2-6 KeV

AVAS

! |
0 0.5 1
Pulse Phase

T

80

40

100

50

100

50

Q

Her X-1

10-20 keV

BAA]

6-10 keV

. |
0 0.5 1 1.5 2

Pulse Phase

Accreting X-ray pulsars
(Nagase 1989, PASJ, 41, 1)

Examples of X-ray light curves.
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Let’s see what has been done
in Schatz et al. 2001 > =>=>



ll. Paper’s Introduction

Accreting material: Hydrogen rich.
=»rapid proton capture process (rp-process: X+p—=2>Y+...)
(Wallace & Woosley 1981, ApJS, 45, 398)

Hydrogen =2 rp-process + beta decay =2 heavier elements

This paper’s finding: a natural termination of this process.

Importance: understanding X-ray lightcurves

=» Reveal NS crust properties (thermal & electrical)

=2 =»Figure out Magnetic field evolution, quiescent luminosity (when no burst)
(Brown & Bildsten 1998, ApJ, 496, 2; Brown, Bildsten & Rutledge 1998, ApJ, 504, 2)

=» Understand Gravitational Waves from deformed crust
(Bildsten 1998, ApJ, 501, 1; Ushomirsky, Bildsten & Cutler 2000, MNRAS, 319, 3)

=» Understand nucleosynthesis of some light p nuclei “>?*Mo “*”®Ru




=2 Nucleosynthesis of some proton-rich nuclei: if only through p-process in Type Il Supernovae:
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Dash line: range of solar system composition.

(Rayet et al. 1995, A&A, 298, 517)

Mean p-process layer overproduction
factor (with respect to solar):

(Fi)(M) = mi(M)/(Mp(M)X; o)
Fo(M) = 3 (Fi)(M)/35

A severe underproduction of
Mo, Ru p-isotropes.

=» Need to be solved.
(Other routines?)



The nonstandard nuclear burning has led to the
unexpected result that in the regime of high mass
accretion rates, M 2 2 x 107°% My yr~1, no carbon

] , , and little helium is produced. Hydrogen burning
-Previous rp(p)-process simulation on X-ray bursts: proceeds via proton capture onto heavy nuclei, perhaps

: : leading ultimately to the buildup of iron-group species.
Review the end points... We believe that this type of nuclear processing proceeds

in X-ray pulsars where current models (Davidsen and
Ostriker 1973) attribute the pulses as arising from the

I\/Iany eq r|y studies: based on ending up at 56Ni . accretion of matter onto the polar caps. Since the high
Taam & Picklum 1978, ApJ, 224, 210

Several later studies: larger networks ending in Kr-Y region.
(e.g., Wallace & Woosley 1981, ApJS, 45, 398)

or a simplified 16 nuclei network =» Cd
(e.g., Wallace & Woosley 1984, AIP Conference Proceedings, 115, 319)

More recent: the network has been extended to Sn (Schatz et al. 1998, PhR, 294, 167).

(The introduction to network calculation lies in Method section later.)



l1l. Methods igas = 8.8 X 10° g/cm?/s

Initial conditions:
X-ray burst: Z=0.001, m = 0.1mgqq
Crust out flow: 0.15MeV/accreted nucleon.

NS \ .
C u) AXP: XYZ=solar, m = 40 mgdd
m

(i) Physical models:

g=19 X 10" cm/s*

Nuclear reaction
Network calculation

P=gy dy= —p dz g"m“"GM/RZ
Schatz et al. 1999, ApJ, 524, 2

Layer
p, P, T

vad

OF =, (aT _8T) C,Trin

f(F,e, T,m,¢t, ..)=0 9 By ma—y .

(energy equation)

(and pressure balance...) L. Bildsten in The Many Faces of Neutron Stars

9



(ii)) Nuclear reaction network calculation: Wolfenstein-Hauser-Feshbach approach
(Bohr 1936; Wolfenstein 1951; Hauser & Feshbach 1952)

nor p | | o
(1) Injection (Pre-collision) (2) Forming a (3) Equilibrium in (4) Further
compound nucleus (CN) The compound nucleus
decay...
By + by 2 T: transmission coef
B:+b, B ocn,i(@) = TAGTR G
A+a-C- Oap,l = O'CN,l(a)Gb { r
q B + b, G, = ?b Decay possibility through B
[
ZiGi — Zi F — 1
[: energy level width= A/t =AW = h(W; + Wy + W3 + ---)
Referto ([RFIEYIIEZE) PHEE 9.9 10




Nuclear reaction network calculation: Wolfenstein-Hauser-Feshbach approach
(Bohr 1936; Wolfenstein 1951; Hauser & Feshbach 1952)

O-CN,l(a) — ﬂ)l%xTaga

O-CZ,B,I — O-CN,l(a)Gb { I3 T: transmission coef
Gp = T calculated
B, + by 3 2Ic +1 ¥ .
B: + b, B Ga = 2L + D)2, + 1) >:G; = ziF — 1  Decay possibility through 3
A+a-C- .
o B, + b, ,

OCN,1 (s oen, (B 2y

Detailed balance: p: momentum

(BETAERE TR A TUES) Jala 9pTy
O-CNl(,B)p[Z}/gﬁ
PR = AT ’ = A:T. T 2T
H-F equation: Ogpl = MAglqYa ZiO-CN,l(i)piz/gi Al o ,Bgoz/ ili

In this paper, the calculations are done with a code NON-SMOKER .
(Rauscher & Thielemann 2000, ADNDT, 75, 1)

Referto (R FIZYIIEZ) R&HEE 9.9
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(i) Nuclear reaction network Xo=0.70 s s |7
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From He to the Sc region: Zo zqsif;‘;srgggg';: 2og
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F1G. 10.— The dominant nuclear flows during a thermonuclear
runaway of the hydrogen-helium shell on the surface of an accret-
ing neutron star (model B). Flows are evaluated when the runaway
has projgressed to a temperature Ty ~0.8, and density p=6.1X 10>
g cm™ ° (t~6308 s). Two major chains of (a, p) and (p,7y)
reactions extend from '®Ne to 3°S and from '"Ne to 2°S and

beyond.



Beyond Fe: (p,v), (o, p), EC/B+decay, reaches (99-101)Sn ~ 80s after burst peak.
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FIG. 1. The time integrated reaction flow above Ga during an x-ray burst and for steady-state burning. Shown are reaction flows
of more than 10% (solid line) and of 1% —10% (dashed line) of the reaction flow through the 3« reaction.

neutron 13



105Sn 106Sb 107 Te
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of more than 10% (solid line) and of 1% —10% (dashed line) of the reaction flow through the 3« reaction.
neutron
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106-108 Te: o unbounded by “4MeV (Page et al. 1994, PRC, 49, 6).
107 Te: a known ground state a emitter (Schardt et al. 1979, NuPhA, 326, 1).

B (7.2) SnSbTe cycles: two cycles
105Te 106Te 107 T 108 T (1) 105 Sn(p,y)106 Sb(p,y)107 Te(y,a)103 Sn
proton — Y - (2) 106 Sn(p,y)107 Sb(p,y)108 Te(y,a)104 Sn
'94Sb| 96D _lf)f"*S‘t‘r' '97Sb (1) is stronger than (2).
103§ 104 105§n|  [1068p B N
:\ * + \ + 4 Change initial conditions:
1021 1031 1041 105Tp can not beyond SnSbTe.

neutron



(ii) Light curves, changes of energy & Abundance
Some long-lived “waiting point” nuclei.
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produce o = 3a increase =» energy release =» Hydrogen completely burned.

Some long-lived “waiting point” nuclei.
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Abundance

Abundance

Some long-lived “waiting point” nuclei.
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Final abundance (rp process ashes):

X-ray burst

Abundance
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(1) Lack of nuclei with A > 107.

(2) Broad distribution of 64 < A < 107.
(due to long-lived waiting nuclei &
enough helium)
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. . D-DIOCESS rp-process
V. D|SCUSS|On rp-process e?fepctive effective
effective
(i) To bypass SnSbTe cycle?
rp-process rp-process
ineffective

ineffective

Only way: a pulsed rp-process.

Between pulses, matter decay to stable nuclei. time

=» Need reignition of ashes € unburned Hydrogen (or) extensive vertical mixing (of nuclei)
(Fujimoto et al. 1987, ApJ, 319, 902)

“Dwarf Bursts” Little unburned Hydrogen

(Taam et al. 1993 in this paper’s calculation.
ApJ, 413, 324)

Lower luminosity...



(ii)) Duration of a burst:
Long enough to match observations.
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(iii) Nucleosynthesis:
Large overproduction factors (>1e9 *solar)

of p nuclei 98 Ru, 102 Pd, 106 Cd.

=» To explain solar system abundance’ origin
=2 =>1% of them are ejected
(Schatz et al. 1998, PhR, 294, 167)

=>=>»=>The ejection mechanism...(not sure)
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The rp-process on accreting NS ends at SnSbTe cycle.
=>»Long (~200s) burst duration & long tail.

=>» Effective synthesis of 65 < A < 107 nuclei.

=» More p-nuclei produced (than if only SNe II).

Thank you for your attention ©



